Pratip Bhattacharya, Ph.D., Associate Professor, Department of Cancer Systems Imaging, UT MD Anderson Cancer Center

Dysregulated cell metabolism is a key driver for lethal prostate cancer (PCa) and resistance to therapy. Androgen receptor (AR) signaling regulated by androgen ligands is one of the critical pathways for PCa pathogenesis, aggressiveness and progression. We have performed a comprehensive metabolic imaging and metabolomics study on Androgen Receptor dependent (AR+) and AR independent (AR-) patient derived xenograft (PDX) tumors employing 13C-pyruvate hyperpolarized magnetic resonance imaging (HP-MRI), 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), 1H Nuclear Magnetic resonance (NMR) and mass spectrometry for assessment of antiandrogen drug, Enzalutamide. Metabolic imaging using 13C-pyruvate HP MRI may be able to clinically predict efficacy and monitor metabolic disruptive agents in individual PCa patients. Hyperpolarized Metabolic MRI may be superior to PET to image cancer metabolism.  Ideally we would like to perform this experiment using a simultaneous PET/MRI scanner for imaging tumor models that will enable us to perform this side-by-side comparison directly.